

WebLogic Server 11gR1 Clustering Labs

Introduction

The following hands-on labs are intended to provide an introduction to some of
the main features of WebLogic Server clusters in WLS 11gR1. The labs are
intended to give you practice in configuring and using WebLogic Server cluster
technology, through the Admin Console and online WLST scripts, with a mixture
of webapp and standalone client applications.

There are 9 labs in all. These cover:

1. Configuring WebLogic Server Domains and Clusters
2. Using WLS as a proxy server (
3. Using Apache HTTP Server 2.2 as a proxy server
4. Using in-memory HTTP session state replication
5. Using JDBC persistent HTTP session state replication (UOW)
6. Clustering stateful session EJBs
7. Load balancing with distributed JMS destinations
8. Automatic migration of JMS services
9. Automatic migration of JMS Store-and-Forward services

The lab materials are included in a zipped archive file. You can unzip this and
store it anywhere on your local machine, this folder will be referred below as
%LAB_HOME%. In it, you will find a number of folders:

Apache – plugins and sample Apache httpd.conf
Apps – deployable client/test applications
Build – source modules for client/test applications
Scripts – WLST scripts which replicate the lab configurations
SQL – SQL scripts for session replication and database leasing
Templates – Template jar files for creating WLS domains for the labs
Shortcuts – A number of useful MS-Windows shortcuts for starting servers etc.

Please note that the shortcuts provided assume a WLS installation directory of
c:\wls103 – you may need to modify these for your local environment). You will
also need to install Oracle DB 10g Express Edition (other Oracle database
versions are fine) and the Apache HTTP Server:
http://httpd.apache.org/download.cgi

http://httpd.apache.org/download.cgi

Lab Setup – Creating a WebLogic Server domain

In this part of the lab, you will use the WebLogic Configuration Wizard to build a
domain containing an Admin Server and several Managed Servers, which we will
use for the remaining lab activities.

1. Start the Configuration Wizard from the Windows Start Programs menu:
Oracle WebLogic -> WebLogic Server 11gR1 -> Tools -> Configuration
Wizard

2. Create a new WebLogic domain
3. Base this domain on an existing template:

%LAB_HOME%\Templates\WLS103ClusterLab.jar
4. Domain name = ClusterLab, keep default domain location
5. Keep default administration credentials (weblogic/weblogic)
6. Check Development mode and JRockit JDK on the next page
7. To familiarize yourself with the servers/machines that are inherited from

the domain template, check Administration Server and Managed Servers,
Clusters and Machines checkboxes on the next step.

8. Click „Next‟ until the Configuration Summary page, then click Create.
9. Click „Done‟

Lab Setup – Starting/Stopping Servers

For this lab, we will run the WebLogic Server instances inside command shell
windows so that you can easily view the server log files and output. To make it
easy to do this, a number of command shell windows have been configured in
the Shortcuts folder – you may want to copy this to your desktop. These have
been configured to use the domain name and location suggested above; you can
change these if you prefer to use a different domain name. You will also need to
reconfigure these shortcuts if your WLS installation directory is not “c:\wls103” –
you can of course install WebLogic Server wherever you like.

To start the servers, double-click on the Admin Server command shell and wait
until the server state changes to RUNNING. If you want to verify your domain
creation, do the same for:

 Managed Server 1

 Managed Server 2

 Managed Server 3

 Proxy Server

To stop a server, you use Ctrl-C in its command window. You can also start and
stop servers from the WebLogic Admin Console, but you will need first to run the
WebLogic Node Manager on your local machine by double-clicking on the Start
Node Manager shortcut. If you wish, you can install Node Manager as a
Windows service: use the installNodeMgrSvc.cmd command file in the
%MIDDLEWARE_HOME%/wlserver_10.3/server/bin directory. You can use the
stopManagedWeblogic.cmd command to stop managed servers, but we won‟t
cover that in these labs.

Lab 1 – Creating a WebLogic Cluster

If you have already started Managed Server 1, 2 or 3 stop these servers now as
a running server cannot be configured to join a newly-created cluster. However,
you want the Admin Server for the domain to be running so that you can make
configuration changes to the domain.

In this exercise, we will create a WebLogic cluster, using the three managed
servers (called dizzy1, dizzy2 and dizzy3) that you created using the domain
Configuration Wizard.

1. Open a browser window and login to the Admin Console (user: weblogic,

password: weblogic): http://localhost:7001/console
2. navigate to Environment -> Clusters in the Domain Structure
3. Create a new cluster:

Name: dizzyworldCluster
Messaging Mode: Unicast

4. Click on the newly created dizzyworldCluster and navigate to Configuration ->
Servers

5. Add dizzy1, dizzy2 and dizzy3 to dizzyworldCluster
6. Navigate to Environment -> Servers in the Domain Structure; you will now see

that dizzy1, dizzy2 and dizzy3 are all members of the dizzyworldCluster, as
shown in the screenshot below:

7. Start the dizzy1, dizzy2 and dizzy3 managed servers by double-clicking on

the shortcuts provided in %LAB_HOME%\Shortcuts.. Examine the log file
output for these servers and you should see the following:

####<Feb 8, 2011 9:04:04 PM MSK> <Notice> <Cluster> <BEA-000197> <Listening for announcements

from cluster using unicast cluster messaging>

####<Feb 8, 2011 9:04:04 PM MSK> <Notice> <Cluster> <BEA-000133> <Waiting to synchronize with

other running members of dizzyworldCluster.>

####<Feb 8, 2011 9:04:34 PM MSK> <Notice> <WebLogicServer> <BEA-000365> <Server state

changed to ADMIN>

####<Feb 8, 2011 9:04:34 PM MSK> <Notice> <WebLogicServer> <Server state changed to

RESUMING>

####<Feb 8, 2011 9:04:34 PM MSK> <Notice> <Cluster> <BEA-000162> <Starting "async" replication

service with remote cluster address "null">

####<Feb 8, 2011 9:04:34 PM MSK> <Info> <Server> <BEA-002610> <Dynamic Listener Service

initialized.>

http://localhost:7001/console

####<Feb 8, 2011 9:04:34 PM MSK> <Notice> <Server> <Channel "Default" is now listening on

127.0.0.1:7003 for protocols iiop, t3, CLUSTER-BROADCAST, ldap, snmp, http.>

####<Feb 8, 2011 9:04:34 PM MSK> <Notice> <WebLogicServer> <BEA-000332> <Started WebLogic

Managed Server "dizzy1" for domain "ClusterLab" running in Development Mode>

####<Feb 8, 2011 9:04:34 PM MSK> <Info> <Server><BEA-002635> <The server "AdminServer"

connected to this server.>

...

####<Feb 8, 2011 9:04:39 PM MSK> <Notice> <WebLogicServer> <BEA-000365> <Server state

changed to RUNNING>

####<Feb 8, 2011 9:04:39 PM MSK> <Notice> <WebLogicServer> <BEA-000360> <Server started in

RUNNING mode>

NOTE: You may use the %LAB_HOME%/Scripts/CreateCluster.py WLST script
to perform this configuration task if you prefer, or you are short of time.

Lab 2 – Configuring WLS as a Proxy Server

In this exercise, you will configure WLS to act as a proxy server for clustered web
applications. In the next exercise, you will learn how to configure the Apache
HTTP Server 2.2 to perform the same task.

1. Deploy the sample web application provided:

%LAB_HOME%/Apps/browseStore.war. You can do this

 either from the Admin Console, by navigating to the Deployments
page, browsing to %LAB_HOME%/Apps, selecting browseStore.war
and accepting defaults and target is to the dizzyworldCluster

 or using the command-line weblogic.Deployer utility by opening a
command shell, setting your domain-specific environment variables by
running the script %DOMAIN_HOME%\bin\setDomainEnv.cmd (you
can also run WebLogic Shell.lnk), cd to %LAB_HOME%/Apps and
then launch the following command:
java weblogic.Deployer -username weblogic -password weblogic -
targets dizzyworldCluster -deploy browseStore.war
You should see the following output, indicating that the application has
been successfully deployed to the cluster:

You can also test the application by pointing your browser directly at the
individual cluster members (e.g. http://localhost:7003/browseStore/).
However, this is not the behaviour we want, since we prefer the cluster
operation to be transparent to users of the application.

2. Now we will configure the HttpClusterServlet proxy service to run on a

separate WebLogic Server instance which will act a Proxy Server. You
created this server as part of the initial domain configuration – the server is
name proxyServer and it is configured to listen on port 7009 (in real-life, you
would probably use the standard port 80, but we will be using that for the
Apache HTTP Server, so we will keep 7009 for proxyServer).

3. We will deploy the Proxy Service as an application (proxyApp.war). You can

examine the configuration by looking at the Build/proxyApp/WEB-INF folder
and opening the web.xml and weblogic.xml deployment descriptors. The
web.xml DD contains the following elements:

<?xml version="1.0" encoding="UTF-8" ?>

- <web-app xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
- <servlet>

 <servlet-name>HttpClusterServlet</servlet-name>

 <servlet-class>weblogic.servlet.proxy.HttpClusterServlet</servlet-class>

- <init-param>

 <param-name>WebLogicCluster</param-name>

http://localhost:7003/browseStore/
../../../ClusterLab/Build/proxyApp/WEB-INF/web.xml##
../../../ClusterLab/Build/proxyApp/WEB-INF/web.xml##
../../../ClusterLab/Build/proxyApp/WEB-INF/web.xml##

 <param-value>localhost:7003|localhost:7005|localhost:7007</param-

value>
 </init-param>

 </servlet>

- <servlet-mapping>

 <servlet-name>HttpClusterServlet</servlet-name>

 <url-pattern>/</url-pattern>

 </servlet-mapping>

- <servlet-mapping>

 <servlet-name>HttpClusterServlet</servlet-name>

 <url-pattern>*.jsp</url-pattern>

 </servlet-mapping>

- <servlet-mapping>

 <servlet-name>HttpClusterServlet</servlet-name>

 <url-pattern>*.htm</url-pattern>

 </servlet-mapping>

- <servlet-mapping>

 <servlet-name>HttpClusterServlet</servlet-name>

 <url-pattern>*.html</url-pattern>

 </servlet-mapping>

 </web-app>

This configuration tells WebLogic Server to route any requests not explicitly
matched by any other rule to the dizzyworldCluster servers. The weblogic.xml
DD sets the context root for the HttpClusterServlet as follows:

<?xml version="1.0" encoding="UTF-8" ?>

- <weblogic-web-app xmlns="http://www.bea.com/ns/weblogic/90"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <context-root>/</context-root>

 </weblogic-web-app>

4. If you want to try out different configurations for HttpClusterServlet, you can
do so by editing these DDs and repackaging the proxyApp.war webapp; then
change to the Build/proxyApp folder and using the command:

Jar –cf ..\proxyApp.war *

5. For now, you may prefer to use the pre-built proxyApp.war that you can find in

the Apps folder. Start proxyServer ManagedServer and deploy proxyApp.war
using the console or the following command (don‟t forget to set your
environment variables with the setDomainEnv.cmd script) and cd to
%LAB_HOME%\Apps folder:
java weblogic.Deployer -username weblogic -password weblogic -targets
proxyServer -deploy proxyApp.war

6. You can verify that the application has been deployed by looking at the
Deployments page in the WebLogic Admin Console:

../../../ClusterLab/Build/proxyApp/WEB-INF/web.xml##
../../../ClusterLab/Build/proxyApp/WEB-INF/web.xml##
../../../ClusterLab/Build/proxyApp/WEB-INF/web.xml##
../../../ClusterLab/Build/proxyApp/WEB-INF/web.xml##
../../../ClusterLab/Build/proxyApp/WEB-INF/weblogic.xml##

7. Test the proxy service by entering the following URL:
http://localhost:7009/browseStore/

You should see the following application. Click on the link to browse the store
and also try opening multiple browser windows to simulate multiple clients. If
you look at the output from managed servers dizzy1, dizzy2 and dizzy3 you
will see that the requests are being forwarded (using a round-robin algorithm)
from the proxy server to the three members of the cluster.

http://localhost:7009/browseStore/

Lab 3 – Configuring the Apache HTTP Proxy Server

In this exercise, you will learn how to configure the Apache HTTP Server to work
as a proxy server with a WebLogic Server 10.3 cluster. Many customers do in
fact use the Apache HTTP Server in this way and the Apache software can be
downloaded from http://httpd.apache.org/. With version 2.2 of the Apache
software, the commands to configure and control the HTTP Server are all
available from the Windows Start Program menu and it is a simple job to
configure the server to work with WebLogic Server.

1. Copy the file mod_wl_22.so from %LAB_HOME%\Apache to the

%APACHE_INSTALL_DIR\modules..This is the WebLogic plug-in module for
the Apache HTTP Server 2.2 and it can be downloaded as part of the
package available from
http://www.oracle.com/technology/products/weblogic/index.html.

2. Go to %APACHE_INSTALL_DIR\conf to edit the Apache httpd.conf

Configuration File. It is necessary to update the configuration file to include
the WebLogic plug-in module; please update the file as follows or verify the
contents if this has already been done (bold type indicates lines that need to
be added to the default httpd.conf):

…
#LoadModule usertrack_module modules/mod_usertrack.so
#LoadModule version_module modules/mod_version.so
#LoadModule vhost_alias_module modules/mod_vhost_alias.so
LoadModule weblogic_module modules/mod_wl_22.so

<IfModule mod_weblogic.c>
 WebLogicCluster 127.0.0.1:7003,127.0.0.1:7005,127.0.0.1:7007
 MatchExpression /*
</IfModule>
<Location /weblogic>
 SetHandler weblogic-handler
 WebLogicCluster 127.0.0.1:7003,127.0.0.1:7005,127.0.0.1:7007
 DebugConfigInfo ON
 PathTrim /weblogic
</Location>

<IfModule !mpm_netware_module>
<IfModule !mpm_winnt_module>
…

http://httpd.apache.org/
http://www.oracle.com/technology/products/weblogic/index.html

3. This configuration will proxy any web URLs to the WebLogic Cluster running
on the local machine at ports 7003 (dizzy1), 7005 (dizzy2) and 7007 (dizzy3).
For more information on how to configure the Apache HTTP Server to work
with WebLogic Server, or how to cover other versions of Apache or other
commonly-used HTTP Servers, please consult the online documentation at:
http://download.oracle.com/docs/cd/E17904_01/web.1111/e14395/toc.htm .

4. When you have verified that mod_wl_22.so has been copied to the Apache

modules directory and the Apache httpd.conf file has been configured as per
step 3. above, you should verify the configuration by going to the Windows
Start Program menu and selecting Apache HTTP Server 2.2 -> Configure
Apache Server -> Test configuration. If the test is successful (the window will
appear briefly and then disappear if there are no errors), then you should
restart the Apache Server using Apache HTTP Server 2.2 -> Control Apache
Server -> Restart.

5. Test the Apache proxy server by entering the following URL into a web

browser: http://localhost/browseStore/ . You should see the familiar
Dizzyworld Store application:

6. The Apache Server is configured by default to listen on port 80 and all
requests are proxied through to your dizzyworldCluster WebLogic Server
cluster. Note that you now have both proxyServer (listening on port 7009)
and Apache httpd (listening on port 80) acting as proxy servers for the
WebLogic Server cluster – you can use either in the following exercises.

http://download.oracle.com/docs/cd/E17904_01/web.1111/e14395/toc.htm
http://localhost/browseStore/

Lab 4 – In-Memory Session State Replication

In this exercise, you will learn how to configure web applications to take
advantage of in-memory session state replication.

1. Before packaging and deploying the web application, we will configure the

servers in the WebLogic Server to use replication groups to control how
session state is failed over form one server to another. Since all our servers
are running on the same physical server, this is included only to illustrate how
replications groups work. However, in real-life deployments, you would use
replication groups to ensure that wherever possible server state is replicated
on a separate physical server machine. When we set up out original domain
configuration, we defined two machines (dizzyMachine1 and dizzyMachine2)
both of which run on your laptop (localhost). We will configure two replication
groups using these machine definitions.

2. Open the WebLogic Administration Console (http://localhost:7001/console)

and login as weblogic/weblogic. Navigate to Environment -> Servers ->
dizzy1 -> Configuration -> Cluster. Set the following properties:

 Replication Group: dizzyRepGroup1

 Preferred Secondary Group: dizzyRepGroup2
Do the same for Servers dizzy2:

 Replication Group: dizzyRepGroup1

 Preferred Secondary Group: dizzyRepGroup2
Do the same for Server dizzy3:

 Replication Group: dizzyRepGroup2

 Preferred Secondary Group: dizzyRepGroup1

This tells WebLogic Server to try to store the secondary state information for

dizzy1 and dizzy2 on dizzy3 and vice-versa. You will be able to experiment later
to view this behaviour in action.

NOTE: You may use the %LAB_HOME%Scripts/CreateRepGroups.py WLST
script to perform this configuration task if you prefer, or you are short of time.

3. After configuring replication groups for the WebLogic Server cluster, you need
to restart the servers dizzy1, dizzy2 and dizzy3 for this change to take effect.
Please do this now.

4. We will use a simple shopping cart application to illustrate how to configure

web applications to use session state replication with WebLogic clusters. You
can find the JSP and other source files for this application in the
%LAB_HOME%\Build\ In-Memory\ ShoppingCart. Open the WEB-INF
directory and examine the weblogic.xml deployment descriptor file, which
should look like this:

http://localhost:7001/console

<?xml version="1.0" encoding="UTF-8" ?>

- <weblogic-web-app xmlns="http://www.bea.com/ns/weblogic/90"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
- <session-descriptor>

 <timeout-secs>300</timeout-secs>

 <invalidation-interval-secs>60</invalidation-interval-secs>

 <persistent-store-type>replicated_if_clustered</persistent-store-type>

 </session-descriptor>

 </weblogic-web-app>

To package the application for deployment to the cluster, open a Windows
command shell window and set your environment using
%DOMAIN_HOME%\bin\SetDomainEnv.cmd, then change directory to
%LAB_HOME%\Build\In-Memory\ShoppingCart. Package the web app for
deployment with:

Jar -cf ../ShoppingCart.war *

You will find a ready-built shoppingCart.war in the ClusterLab/Apps/In-
Memory folder and you can use this if you wish.

5. Deploy the ShoppingCart.war web application from the WebLogic Admin
Console (target it to the whole DizzyWorldCluster) or If you prefer you can
deploy the application from the command line using the following command
(don‟t forget to set your environment variables with the setDomainEnv.cmd
script and cd to %LAB_HOME%\apps):
java weblogic.Deployer -username weblogic -password weblogic -targets
dizzyworldCluster -deploy In-Memory\ShoppingCart.war

6. Test the application by opening a browser window and entering the following
URL: http://localhost/ShoppingCart (note that we are using the Apache Proxy
Server to redirect the requests to the WebLogic cluster). You should see the
shopping cart application:

../../../ClusterLab/Build/In-Memory/ShoppingCart/WEB-INF/weblogic.xml##
../../../ClusterLab/Build/In-Memory/ShoppingCart/WEB-INF/weblogic.xml##
http://localhost/ShoppingCart

7. Click on the „Go Shopping‟ link to add items to your shopping cart: these
items are stored in the session state and you can view the contents of the
shopping cart (and the session state) by clicking on the „View Shopping Cart‟
link:

8. If you look at the log file outputs for the clustered servers dizzy1, dizzy2 and

dizzy3 you will be able to see which server is the primary for a particular web
session. Try opening a number of different browser windows to see how the
sessions are handled by different servers within the cluster.

9. Now try simulating a machine failure by killing (Ctrc+C) the server that

contained the session state. If you click on the „View Shopping Cart‟ link for
web sessions that were being served by that server instance, you will see
how the session fails over to the secondary server in the cluster. Experiment
with killing and re-starting servers and you should be able to see the effect of
the replication groups that you configured earlier in this exercise. If you wish
you can also experiment by changing the replication group configuration;
however, you will need to restart the clustered servers after you do so.

Lab 5 – JDBC Session State Replication

In this exercise, you will learn how to configure WebLogic Server to use a JDBC
persistent data store for session state replication, using an Oracle 10g database.
You will need to install Oracle 10g Data Express Edition for this lab. You should
create a user weblogic/weblogic, with permission to create database tables. We
will use this account to configure a JDBC data source.

1. First we need to verify that the Oracle 10g XE database is correctly

configured. Open a SQL Command window from the Windows Start
Programs menu Oracle Database 10g Express Edition -> Run SQL
Command Line. Login using the command „conn weblogic‟; you will be
prompted for the password, which is „weblogic‟. We will use a database table
(weblogic.WL_SERVLET_SESSIONS) to store the persistent session state
information. There is a SQL script (SessionTable.sql) to create this table in
%LAB_HOME%\SQL:

CREATE TABLE "WEBLOGIC"."WL_SERVLET_SESSIONS"
(WL_ID VARCHAR (100) NOT NULL
, WL_CONTEXT_PATH VARCHAR (100) NOT NULL
, WL_IS_NEW CHARACTER (1)
, WL_CREATE_TIME DECIMAL (20)
, WL_IS_VALID INTEGER
, WL_SESSION_VALUES BLOB
, WL_ACCESS_TIME DECIMAL (20) NOT NULL
, WL_MAX_INACTIVE_INTERVAL INTEGER,
PRIMARY KEY (WL_ID, WL_CONTEXT_PATH)
);

You can cut and paste this script into the SQL command window to create the
database table.

2. Now we will configure a JDBC data source to use when storing the session

data. Open the WebLogic Administration Console in your browser and go to
the Services -> Data Sources tab and create a new generic data source with
the following properties:

Name: SessionDS
JNDI Name: SessionDS
Database Type: Oracle
Database Driver: Oracle‟s Driver (Thin) for Instance connections Versions
9.0.1 and later

Transaction Options:

Supports Global Transactions
One-Phase Commit

 Connection Properties

Database Name: XE
Host Name: localhost
Port: 1521
User Name: weblogic
Password: weblogic

Test your connection settings on the next page by clicking Test Configuration
button. If the test succeeded, press Next.
Target the data source to the whole DizzyWorldCluster and press Finish.

3. We now need to reconfigure the ShoppingCart application to use JDBC

session state replication. The only change required is to the application‟s
weblogic.xml deployment descriptor. You will find the necessary files in the
%LAB_HOME%\Build\JDBC\ShoppingCart folder. Open WEB-
INF/weblogic.xml and you should see the following:

<?xml version="1.0" encoding="UTF-8" ?>

- <weblogic-web-app xmlns="http://www.bea.com/ns/weblogic/90"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
- <session-descriptor>

 <timeout-secs>300</timeout-secs>

 <invalidation-interval-secs>60</invalidation-interval-secs>

 <persistent-store-type>jdbc</persistent-store-type>

 <persistent-store-pool>SessionDS</persistent-store-pool>

 <persistent-store-table>WL_SERVLET_SESSIONS</persistent-store-table>

 </session-descriptor>

 </weblogic-web-app>

To package the application for deployment to the cluster, open a Windows
command shell window and set your environment using SetDomainEnv.cmd
from your domain bin directory, then change directory to
%LAB_HOME%\Build\JDBC\Shopping Cart. Package the web app for
deployment with:

Jar -cf ../ShoppingCart.war *

You will find a ready-built shoppingCart.war in the
%LAB_HOME%/Apps/JDBC folder and you can use this if you wish.

4. Go into the WebLogic Admin Console, stop the ShoppingCart application and
redeploy it from ClusterLab/AppsJDBC/ShoppingCart.war or your own
version. If you prefer you can redeploy the application from the command line
using the following commands (don‟t forget to set your environment variables
with the setDomainEnv.cmd script and cd to %LAB_HOME%\Apps):

../../../ClusterLab/Build/JDBC/ShoppingCart/WEB-INF/weblogic.xml##
../../../ClusterLab/Build/JDBC/ShoppingCart/WEB-INF/weblogic.xml##

java weblogic.Deployer -username weblogic -password weblogic -targets
dizzyworldCluster -undeploy -name ShoppingCart.war

java weblogic.Deployer -username weblogic -password weblogic -targets
dizzyworldCluster -deploy JDBC\ShoppingCart.war

5. Test the new application by going to http://localhost/ShoppingCart and
repeating some of the tests from the section above on In-Memory session
replication. You can verify that session data is being stored in the JDBC data
source using a SQL Command Line and the following SQL Statement:
select WL_ID from weblogic.WL_SERVLET_SESSIONS;

http://localhost/ShoppingCart

Lab 7 – Clustering Stateful Session EJBs

In this exercise, you will use one of the sample applications distributed free with
WebLogic Server 11gR1 to learn about clustering Stateful Session EJBs
(SFSBs) with WLS 11gR1. In this example, a SFSB is used to simulate the
behaviour of a stock trading application. Clients connect to the WebLogic
cluster, perform trades and view their running account balance. State is
automatically persisted (using in-memory replication) by the container between
calls to the SFSB.

1. Open a command shell, and set your environment variables by running the

%MIDDLEWARE_HOME%\wlserver_10.3\samples\domains\wl_server\bin\Se
tDomainEnv.cmd command script. Change directory to the
Cluster/EJB/StatefulSession sample application directory:
%MIDDLEWARE_HOME%\wlserver_10.3\samples\server\examples\src\exa
mples\cluster\ejb\statefulSession

2. We will make some changes to the source files for the sample application to

make it work with the dizzyworldCluster that we have used throughout this
lab. You will find 2 files in the %LAB_HOME%/Build/SFSB directory:
Client.java and TraderBean.java. Copy these files to the sample directory
(you may want to rename the old files first, if you wish to keep them for later
use).

3. Build the application by typing: ant build and then package the client and

server applications for deployment by typing: ant deploy

4. Deploy the SFSB application to the dizzyworldCluster (make sure all servers
are running) using the following command:

java weblogic.Deployer -username weblogic -password weblogic -targets
dizzyworldCluster -deploy dist\cluster_ejb_stateful_session.ear

You should see the following messages indicating that the application has
been successfully deployed to the cluster:

5. Run the client application by typing: ant run. The client program has a simple
user interface which allows you to choose whether to execute a trade, view
your existing balance or quite the application as shown in the example below:

6. Look at the output from the clustered servers dizzy1, dizzy2 and dizzy3. Try
killing a server that contains the state of the session bean and watch how the
SFSB session state fails over to a secondary server – enter „bal‟ on the
command line to see that the account balance is maintained. Experiment
with killing and restarting the servers in different orders, with multiple clients
connected, to see how the replication group/machine configuration affects the
failover behaviour.

Lab 8 – Load Balancing with Distributed JMS Destinations

In this exercise, you will learn how to load balance delivery of Java Message
Service (JMS) messages across multiple WebLogic Server instances in a cluster
using distributed destinations. JMS resources are pinned resources and so
cannot be deployed to more than one server in a cluster (with the exceptions of
JMS Connection Factories and Distributed Destinations). Each server handling
JMS messages needs to have a JMS Server with one or more destinations
(queues or topics) defined. Load balancing messages from clients can be
accomplished using distributed destinations.

In the lab, we will configure a number of JMS resources on dizzy1, dizzy2 and
dizzy3 and then define a virtual destination which will result in messages being
load balanced across the three physical destinations. You will gain experience in
configuring WebLogic JMS. You will also have an opportunity to examine some
of the tools available in the WebLogic Server Admin Console for monitoring and
managing JMS queues, topics and messages.

Completing this lab requires you to configure JMS Servers, JMS Modules, JMS
Resources and JMS SubDeployments on the dizzyworldCluster servers. If you
are short of time or do not want to perform these configuration tasks by hand, we
suggest that you consider using the CreateDistributedQueue_step1.py (covers
steps 1-5) and CreateDistributedQueue_step2.py (covers steps 9-14) WLST
scripts in the %LAB_HOME%\Scripts sub-folder (remember to set your
environment using your domain SetDomainEnv.cmd command file.

Note on JMS Terminology:

JMS Server: JMS servers act as management containers for the queues and
topics in JMS modules that are targeted to them.

JMS Module: JMS system resources are configured and stored as modules
similar to standard J2EE modules. Such resources include queues, topics,
connection factories, templates, destination keys, quota, distributed queues,
distributed topics, foreign servers, and JMS store-and-forward (SAF) parameters.

Subdeployment: A subdeployment is a mechanism by which JMS module
resources (such as queues, topics, and connection factories) are grouped and
targeted to a server resource (such as JMS servers, server instances, or cluster).

1. Configure a JMS Server on dizzy1. Open the WebLogic Admin Console and

navigate to Services->Messaging->JMS Servers and create a new JMS
Server with the following properties:

Name: dizzyworldJMSServer
Persistent Store: None

Target to: dizzy1

2. Create a JMS Module, Queue and Topic on dizzy1. Navigate to Services-
>Messaging->JMS Modules and create a new JMS module with the following
properties:

Name: dizzyworldModule
Descriptor File Name: dizzyworldModule
Target to: dizzy1

3. Add a Subdeployment to the dizzyworldModule. Navigate to Services-
>Messaging->JMS Modules and click on the dizzyworldModule you just
created. Select the Subdeployments tab and add a Subdeployment with the
following properties:

Name: dizzy1SubDeployment
Target to: dizzyworldJMSServer

4. Add a JMS Queue to the dizzyworldModule JMS Module: Navigate to
Services->Messaging->JMS Modules-> dizzyworldModule and click „New‟ to
add a JMS Resource with the following properties:

Type of resource: Queue
Name: dizzyworldQueue
JNDI Name: dizzyworldQueue
Template: None
Subdeployment: dizzy1SubDeployment

5. Add a JMS Topic to the dizzyworldModule JMS Module. Navigate to

Services->Messaging->JMS Modules-> dizzyworldModule and click „New‟ to
add a JMS Resource with the following properties:

Type of resource: Topic
Name: dizzyworldTopic
JNDI Name: dizzyworldTopic
Template: None
Subdeployment: dizzy1SubDeployment

6. If you wish, at this stage you can test the JMS configuration you just created
on managed server dizzy1. You will find a JMS test client application in the
%LAB_HOME%/Apps sub-folder, called messaging.war. Deploy the
application using the Admin Console (deploy to all servers in the
dizzyworldCluster as we will be using it later to test the distributed JMS
destination) or by using the following command:

java weblogic.Deployer -username weblogic -password weblogic -targets
dizzyworldCluster -deploy messaging.war

You should see the following message, indicating that the application has
successfully been deployed:

7. Open a browser window and enter http://localhost/messaging to access the

JMS test client application (using the Apache Proxy Server). You should see
the following:

8. Experiment by posting a few messages to the dizzyworldQueue JMS Queue

and dizzyworldTopic JMS Topic – do not try the Distributed Queue at this
stage as we have not yet configured the necessary JMS Resources. If you
want to see the messages in the Admin Console, navigate to Messaging-
>JMS Modules->dizzyworldModule, click on dizzyworldQueue, select the
Monitoring tab, check the DizzyworldModule!dizzyworldQueue box and click

http://localhost/messaging

on „Show Messages‟. You can now click on individual messages to see the
message data as shown below:

9. We will now extend our JMS configuration to include JMS Servers on dizzy2
and dizzy3, with associated JMS Modules and Resources.

10. Following the same procedures as before, create the following JMS Servers:

Name: dizzyworldJMSServer2
Target: dizzy2

Name: dizzyworldJMSServer3
Target: dizzy3

11. Create a new JMS Module with the following properties:

Name: dizzyworldClusterJMSModule
Target: dizzyworldCluster

12. Create a new JMS Subdeployment with the following properties:

Name: dizzyworldClusterSubdeployment
Target: dizzyworldCluster

13. Create a new Distributed Queue with the following properties:

Type: Distributed Queue
Name: dizzyworldDistributedQueue
JNDI Name: dizzyworldDistributedQueue
Load-Balancing Policy: Round-Robin
Allocate Members Uniformly: True
[Click on Advanced Targeting]
Target: dizzyworldClusterSubdeployment

14. Create a new Connection Factory for the JMS Distributed Queue with the
following properties:

Type: Connection Factory
Name: dizzyworldConnectionFactory
JNDI Name: dizzyworldConnectionFactory
[Click on Advanced Targeting]
Target: dizzyworldClusterSubdeployment

When you have created the Connection Factory, disable Server Affinity by
clicking on dizzyworldConnectionFactory, select the Load Balancing tab and
uncheck the box for Server Affinity. This will enable you to watch the round-
robin load-balancing policy in operation.

15. Now you can use the bottom button on the messaging test application to try
out the dizzyworldDistributedQueue. Try sending several (at least 4)
messages

16. go to the Messaging->JMS Modules -> dizzyworldClusterJMSModule->

dizzyworldDistributedQueue->Monitoring. Click Customize this table and
shuttle Messages Current to the chosen columns list, press Apply.
Now you can see your sent the messages distributed between 3 JMS Servers
on dizzy1 – dizzy3.

Lab 9 – Automatic Migration of JMS Services

In this section of the lab, you will see how a WebLogic Server 11gR1 Cluster can
be configured to provide automatic service migration for JMS services. In this
example, we will define a Migratable Target that is able to migrate across the
servers that make up the dizzyworldCluster to ensure that the services it hosts (in
this case, a JMS Server with its own persistent JDBC message store) are highly
available. You will create a JMS queue (dizzyQueue) and connection factory
(dizzyConnectionFactory), and target them at the dizzyMigratableTarget. Then
you will be explore both manual and automatic service migration using a JMS
client application that will allow you to send messages continuously to the queue
as it migrates from server to server.
We start from creating new domain named ClusterMigrateLab based on
%LAB_HOME%\Templates\ClusterLab.jar template. Start AdminServer for this
new domain.
Make sure your local Oracle Database 10g XE is running. Log on as weblogic /
weblogic. Run the SQL command given in %LAB_HOME%\SQL\Leasing.ddl
(this is a copy of
%MIDDLEWARE_HOME%\wlserver_10.3\server\db\oracle\920\leasing.ddl that
is installed with WebLogic Server 11gR1). This will create the database table
used by the WLS Cluster to determine which servers are active and available to
host the migratable services:

CREATE TABLE ACTIVE (
 SERVER VARCHAR2(150) NOT NULL,
 INSTANCE VARCHAR2(100) NOT NULL,
 DOMAINNAME VARCHAR2(50) NOT NULL,
 CLUSTERNAME VARCHAR2(50) NOT NULL,
 TIMEOUT DATE,
 PRIMARY KEY (SERVER, DOMAINNAME, CLUSTERNAME)
);

Create a cluster dizzyworldCluster (repeat the steps 1-6 from Lab 1).

Follow the instructions below to configure this lab manually:

1. Create a JDBC Data Source that WebLogic Server will use to access the
database leasing information. Create a JDBC data source called
LeasingDS,JNDI Name: LeasingDS, database type – Oracle. Select
Oracle‟s Driver (Thin) for Instance Connections as a database driver,
leave default values on the next page. Enter the following connection
properties: database name - XE, host - localhost, port – 1521, user –
weblogic, password – weblogic.. Test the connection and target it to all
servers of the dizzyworldCluster.

2. Configure the Cluster Migration policy by selecting “Clusters” in the
console navigation pane, choose dizzyworldCluster and click to the
“Migration” tab. Select Migration Basis = Database, Data Source for
Automatic Migration = LeasingDS, Auto Migration Table Name = ACTIVE.
Specify dizzyMachine1 and dizzyMachine2 as candidate machines for
migratable servers.

3. Create the JDBC Data Source that will be used for the Migratable Target‟s

persistent JMS message store. Create a JDBC data source called
dizzyDS, using the Oracle Thin JDBC Driver (non-XA) with connection
string localhost:1521:XE, one-phase commit and user/password =
weblogic/weblogic. Test the connection and target it to all servers in the
cluster.

4. Create a Migratable Target by selecting “Migratable Targets” in the
console navigation pane, and click on „New‟. Create
dizzyMigratableTarget targeted at the dizzyworldCluster, with a migration
policy of “Auto Migrate Exactly-Once” and User-preferred server = dizzy3.
Click on the newly created migratable target, go to “Migration” tab to add
dizzy1, dizzy2 and dizzy3 as constrained candidate servers.

5. Create new JDBC Persistent Store: go to Services->Persistent Stores,
and create new JDBC Store with the following properties: name -
dizzyJDBCStore, target – dizzyMigratableTarget, data source – dizzyDS.

6. Stop all managed servers, stop and restart the Admin Server, and then
start the managed servers dizzy1, dizzy2 and dizzy3. You will see the
servers synchronizing with the dizzyworld cluster. When all the server are
running, open the admin console again, select “Migratable Targets”,
choose dizzyMigratableTarget and click on the “Control” tab:

You can now see that dizzyMigratableTarget is deployed to dizzyworldCluster, is
currently hosted on dizzy1 with dizzy1, dizzy2 and dizzy3 as candidate servers.
Check the box and click on the “Migrate” button to perform a manual migration to
another server, say dizzy2. After a few seconds, refresh the browser and you will
see that dizzyMigratableTarget is now hosted on dizzy2. Next, try killing the
server currently hosting the migratable target (Ctrl-C will force a shutdown) and
watch dizzyMigratableTarget automatically migrate to another server. You can
do this as often as you like.

Next we will create a JMS Server and a number of JMS resources, which we will
target at dizzyMigratableTarget. If you want to skip these steps, you can use the
%LAB_HOME%\Scripts\CreateMigratableJMSQueue.py WLST script for this
purpose.

 Create a new JMS Server called dizzyJMSServer, with dizzyJDBCStore
as its persistent store, and target it to dizzyMigratableTarget. This allows
the JMS Server to migrate with the migratable target. It is necessary for
the persistent store to be defined and available on every server to which
the JMS Server can migrate; in normal production scenarios a highly-
available database solution such as Oracle RAC would be used for this
purpose, but here we simply use the local XE database with a data source
(dizzyDS) targeted at every server in the cluster.

 Create a new JMS Module called dizzyJMSModule, which will contain the
JMS resources we wish to define. Target it to the dizzyworldCluster.

 Click on the newly created JMS Module and create a new JMS
SubDeployment called dizzySubDeployment and target it to the
dizzyJMSServer you just created.

 Click on dizzyJMSModule and create a new JMS Queue called
dizzyQueue (JNDI: dizzyQueue), assign to the dizzySubDeployment.

 Click on dizzyJMSModule and create a new JMS Connection Factory
called dizzyConnectionFactory (JNDI: dizzyConnectionFactory), assign it
to the dizzySubDeployment.

Go to the “Servers” page in the admin console, select any server and inspect the
JNDI tree by clicking on the “View JNDI tree” link. You will see that dizzyQueue
and dizzyConnectionFactory are defined for all three servers in the cluster, no
matter which server is actually hosting the migratable target. WebLogic Server
maintains a cluster-wide JNDI tree, so that client objects anywhere in the cluster
can access these resources, regardless of which server they are running on.

To test the migratable JMS Server deployment, you can use the QueueSend
client program that you will find in the %LAB_HOME%\Build\Migration folder.
You will find two source files (QueueSend.java and QueueReceive.java) as well
as the compiled Java class files. Take a look at QueueSend.java: it is written to
allow you to send messages continuously to the dizzyQueue without having to
know which server the migratable JMS Server is actually hosted on at any time.
To try it out, open a shell window and run setDomainEnv.cmd from your domain‟s
bin directory and change directory to the %LAB_HOME%\Build\Migration folder.
Run the JMS client program:
java QueueSend t3://localhost:7003,localhost:7005,localhost:7007

This sets the initial context to try to connect to the cluster using ports 7003,7005
or 7007. The program is coded to use dizzyConnectionFactory and dizzyQueue,
and there is retry logic to reconnect to the cluster if the session is lost; note that
the initial context will automatically try to connect to a different server if the one it
is currently connected to is killed. The program will prompt you to enter a series
of short text messages, which will be sent to the dizzyQueue running on the
migratable target. Experiment with manual and automatic migration scenarios:

you should see the program continue without interruption as long as there is at
least one server available in the cluster. To see the messages being stored on
the JMS Server, open the console and go to JMS Modules->dizzyJMSModule-
>dizzyQueue and open the “Monitoring” tab to view or delete messages. To
consume the messages, you can run the QueueReceive.java program:
Java QueueReceive t3://localhost:7003,localhost:7005,localhost:7007

Lab 10 – Automatic Migration of JMS Store-and-Forward
(SAF) Services

In this lab, you will add a JMS Store-and-Forward (SAF) agent to the dizzyworld
cluster, using the same Migratable Target we used in the previous lab. We will
configure a SAF Agent targeted at the dizzyMigratableTarget, which will forward
JMS messages to a queue hosted on a JMS server in a second WLS domain.

As the second domain we will use a domain called „dizzyworld2‟ (the same
domain that is used in the JMS Lab): if you have already built that domain, you
can simply reuse it. Otherwise, do the following:

 there is Configuration Wizard template file you can use to create the
domain in %LAB_HOME%\Templates. Start the Configuration Wizard and
create a new domain based on the template file
WLS103JMSLabDomain2.jar. You can choose a name for this domain -
we will use „dizzyworld2‟. The domain consists of one AdminServer (listen
port: 5001) and one managed server, remoteServer (listen port: 5003).

 When you have created the dizzyworld2 domain using the WebLogic
Server Configuration Wizard, you should open a command shell and run
the WLST script CreateSAFremote.py from the ClusterLab/Scripts folder:
java weblogic.WLST CreateSAFremote.py

Run the AdminServer and the managed server named remoteServer for the
dizzyworld2 domain.
Open the administration console for dizzyworld2 (http://localhost:5001/console)
and take a look at the JMS services it hosts. There is one JMS Server
(remoteJMSServer) which is targeted to remoteServer, and one JMS System
Resources Module (remoteJMSModule), which contains a Connection Factory
(remoteConnectionFactory) and a Queue (remoteQueue), both of which are part
of remoteSubDeployment. We will use this queue as a SAF destination.

The steps for configuring a Store-and-Forward (SAF) Agent are covered in detail
in the lab guide for the JMS Lab. Rather than repeat them, we will use a WLST
script from the JMS Lab (adapted slightly to work with a cluster and migratable
targets) to create the necessary resources. The script is called
createMigratableSAFsource.py and you will find it in the %LAB_HOME%\Scripts
folder. Note that this script references two further files (createSAFsourceSecret
and createSAFsourceConfig) which must be in the same directory as the main
script file; these are used to store an encrypted password for the remote WLS
server. Open a shell window (set the environment with setDomainEnv.cmd), go
to %LAB_HOME%\Scripts and run the following command:

>java weblogic.WLST createMigratableSAFsource.py

http://localhost:5001/console

Open the administration console (http://localhost:7001/console) and have a look
at the configuration that the WLST script has created:

JMS Server: sourceJMSServer, target: dizzyMigratableTarget
SAF Agent: sourceSAFAgent, target: dizzyMigratableTarget
JMS Module: sourceJMSModule, target: dizzyworldCluster

The JMS Resources are arranged into two subdeployments:
sourceSubDeployment: targeted to sourceJMSServer
sourceSAFSubDeployment: targeted to sourceSAFAgent

The sourceJMSModule contains the following resources:
sourceConnectionFactory (in sourceSubDeployment)
sourceSAFRemoteContext (in sourceSAFSubDeployment)
sourceSAFErrorHandling (in sourceSAFSubDeployment)
sourceSAFImportedDestinations (in sourceSAFSubDeployment)

sourceSAFImportedDestinations contains one remote JMS queue resource
(remoteQueue).

Together, these JMS system resources define a new JMS server and a SAF
Agent, both targeted at the dizzyMigratableTarget, that provide SAF message
delivery to the remote queue. Client applications use sourceConnectionFactory
to create a JMS connection and session, and remoteQueue to create the JMS
destination, using the cluster-wide JNDI tree.

There are sample classes available for you to try out this configuration. Note that
there is no need to restart the dizzyworld managed servers – the SAF Agent is
automatically deployed and active in the cluster. The sample client classes are
in the %LAB_HOME%\Build/Migration\SAF folder, with the Java source files.
Open a couple of command shells, run setDomainEnv.cmd from your domain‟s
bin directory and change directory to the %LAB_HOME%\Build\Migration\SAF
folder. and try these out:

>java QueueSend t3://localhost:7003,localhost:7005,localhost:7007

>java QueueReceive t3://localhost:5003

You will be prompted to enter short text messages and you should see them
appear in the QueueReceive window (which is listening to the remote queue in
the other domain). As before, experiment by shutting down managed servers in
the dizzyworld domain to see the migratable target move around the cluster to
ensure that the SAF Agent is always available. You can use the admin console
to view the location of the migratable target at any given time. If your system is
short of memory, note that you do not need to have the admin servers for either
domain running: the managed servers can start up and run quite independently.

http://localhost:7001/console

